Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1
نویسندگان
چکیده
منابع مشابه
Mechanistic analysis of Xenopus EXO1's function in 5′-strand resection at DNA double-strand breaks
The processing of DNA double-strand breaks (DSBs) into 3' single-stranded tails is the first step of homology-dependent DSB repair. A key player in this process is the highly conserved eukaryotic exonuclease 1 (EXO1), yet its precise mechanism of action has not been rigorously determined. To address this issue, we reconstituted 5'-strand resection in cytosol derived from unfertilized interphase...
متن کاملThe RNA binding protein Npl3 promotes resection of DNA double-strand breaks by regulating the levels of Exo1
Eukaryotic cells preserve genome integrity upon DNA damage by activating a signaling network that promotes DNA repair and controls cell cycle progression. One of the most severe DNA damage is the DNA double-strand break (DSB), whose 5΄ ends can be nucleolitically resected by multiple nucleases to create 3΄-ended single-stranded DNA tails that trigger DSB repair by homologous recombination. Here...
متن کاملCtp1-dependent clipping and resection of DNA double-strand breaks by Mre11 endonuclease complex are not genetically separable
Homologous recombination (HR) repair of programmed meiotic double-strand breaks (DSBs) requires endonucleolytic clipping of Rec12(Spo11)-oligonucleotides from 5' DNA ends followed by resection to generate invasive 3' single-stranded DNA tails. The Mre11-Rad50-Nbs1 (MRN) endonuclease and Ctp1 (CtIP and Sae2 ortholog) are required for both activities in fission yeast but whether they are genetica...
متن کاملDNA Double-Strand Breaks
The activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) and class-switch recombination (CSR) of immunoglobulin (Ig) genes, both of which are associated with DNA double-strand breaks (DSBs). As AID is capable of deaminating deoxy-cytidine (dC) to deoxy-uracil (dU), it might induce nicks (single strand DNA breaks) and also DNA DSBs via a U-DNA glycosylase-media...
متن کاملProcessing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks
The caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2011
ISSN: 0028-0836,1476-4687
DOI: 10.1038/nature10515